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Perfect loss of generalization due to noise in K = 2 parity 
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Received 2 August 1993 

Abslraet. Learning in a specific type of multilayer network referred to as a K = 2 parity 
machine is studied in the limit thal both the system size N and the number of examples m 
become infinite while the ratio (I = m f N  remains finite. The machine consists of K = 2 
hidden units with non-overlapping receptive fields each of size N f 2 .  The output is the sign 
of the product of the two hidden units for each input. We investigate incremental leaning by 
empirically using a least-action algorithm in the following WO learning paradigms. In the first, 
it is assumed that each example is transmitted perfectly to a student. We show that an ability to 
gene- emerges as the rescaled length of the connenion vector 1 reaches a critical value 1,. 
Funher, we show that a student can identify the target exactly in the limit (I + ca. where the 
prediction enor E decreases to zero as E - 0.441a+/3. In the secand paradigm. we examine 
what happens if each teacher signal is reversed to the opposite sign at a noise rate X. For small A, 
it is found that the prediction enor converges to a finite value of 0 (&) in 0 iterations, 
However, for a noise rate beyond a critical value A, - 0.175, the. student cannot acquire any 
generalization abilily even as a + M. 

1. Introduction 

For many years, great effort has been made to understand learning machines. Single-layer 
perceptrons have been an especially central target of research because of their simplicity, 
and several remarkable results have been obtained (e.g. see Seung et al 1992). However, 
as is well known, the class of problems solvable by simple perceptrons is limited. It is 
therefore of significant interest now to investigate multilayer networks. 

In this paper, we examine learning in simple multilayer networks known as K = 2 
parity machines. These machines consist of N input units, K = 2 hidden units and one 
output unit (figure 1). The input units are divided into two disjoint sets of the same size 
N / 2 .  The kth hidden unit is connected to the kth set of input units via a connection 
vector .7k = ( j l t ,  ja, ..., j (Np )k ) ,  where k = 1,2. For each input I = (11.~2) = 
( ~ 1 1 ,  X Z I .  . . . , X(N,Z)I, X I Z ,  x z .  . . . , x(~ ,2 )2 ) ,  the sign of the product of the two hidden units 
sign ((51 . zl)(Jz .q)) is returned. 

This kind of multilayer network for general K was first introduced by Mitchison and 
Durbin (1989). They addressed the problem of how many random dichotomies can be 
implemented in such a network. For the fully connected version, they found an upper 
bound on the capacity which scales as 0 (NK log K) as K + 03. By using the replica 
trick, Hansel et ai (1992) investigated K =~ 2 networks in which m = N E  examples are 
memorized. They found a phase for a < a* = n2/8 where the student memorizes the entire 
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learning set without being able to generalize the rule from the examples. They explained 
the existence of this phase as follows. For even K ,  two machines represented by J and 
- J provide exactly the same input-output relation. This property makes the free energy 
of the system an even function of the overlap q of the student with the teacher. This 
free energy consists of two terms. One is an entropy term and the other is a training 
energy due to mistakes made on the given set of examples. A balance of these two 
terms determines the thermodynamic state. For CY e CY,, the entropy term is dominant 
because the training energy is small when there are a small number of examples. Thus, a 
paramagnetic solution q = 0 which maximizes the entropy is realized. This represents a 
rote memorization phase. However, this solution becomes unstable at CY = CY, because the 
training energy for the paramagnetic state increases as learning continues. Eventually, the 
symmetry is spontaneously broken and a non-zero replica symmetric solution is obtained. 
This corresponds to the onset of generalization. They also showed that this replica symmetric 
solution increases monotonically to 1 as 1 - q -   CY)^ for LY + CO, which implies that the 
generalization error E scales asymptotically as E - 0 (l /a),  a result which is also obtained 
by many authors for general systems (e.g. see Amari et al 1992). 

U U 
NI2 NI2 

Ngure 1. Schematic representation of a K = 2 parity machine. 

In our framework, the objective of learning is not to memorize a given set of examples 
correctly but to extract a target rule from examples. A number of learning algorithms 
which aim to embed a given set of examples in a network have been proposed, although 
none of them is ensured to converge in a finite time for multilayer networks. Among such 
empirical methods, Mitchison and Durbin (1989) reported that a strategy called the 'least 
action algorithm' &AA) exhibits very good, performance for numerical experiments, which 
has to be explained theoretically. We will show that when each example is independently 
drawn from a uniform diseibution, this algorithm enables a student machine to identify the 
target relation exactly in our problem unless teacher signals are disrupted by noise. 

In the original version of LAA, a set of examples are cyclically shown to a student until 
the examples are memorized. Instead of proceeding in such a way, we will apply LAA 
incrementally. In the following, we consider the limit that both the system size N and 
the number of examples become infinite, keeping a = m/N finite. This then allows the 
learning process to be described by the dynamics of the following two order parameters: 
the overlap q = ( J  . Jo)/(I .7IJ0[) and the length of the connection vector I = I J I / m ,  
where 3 and .To represent the connection vectors to a hidden unit of a student and a teacher, 
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respectively. 
The results obtained in this paper are summarized as follows. When none of the 

cxamplcs arc disrupted by noise, it is shown that a generalization ability emerges as the 
rescaled length of the vector reaches a critical value 1, - 0.696. However, for 1 c lc, the 
generalization ability is instead lost as learning goes on. We also show that the student can 
extract the target rule exactly in the limit a + 00, where the prediction error E converges 
to zero as E - o.Ml(~-'/~.  Next, we investigate what happens when the teacher signal is 
reversed to the opposite sign at a rate A. For small A, it is shown that a prediction error 
converges not to zero but to a finite value of 0 (a) after 0 (i-3/z) examples are given. 
However, if the noise rate is greater than a critical value kc - 0.175, the student cannot 
acquire any generalization ability even as CY + 00. ' . . 

2. Learning without noise 

In this paper, student machines are assumed to have the same architecture as that of the 
teacher. Thus, it is possible that a student extracts the target rule exactly. In this section, 
we further assume that every teacher signal is correctly transmitted to the student. As 
mentioned above, only empirical algorithms are known for the memorization of a given 
set of examples in multilayer networks. Mitchison and Durbin (1989) found that a slight 
modification of Nilsson's strategy (1965) exhibits very good performance for general K 
parity machines and called it the 'least action algorithm' (LAA). For a given set of P 

and CTP E [-1, +I) is the teacher signal (JL = 1,2, .  . . , P), the original version of LAA 
works in the present machine as follows. (i) If the student gives a correct answer, the 
connedon J = (51, Jz) remains unchanged and the next example is presented. (ii) If a 
wrong answer is returned, local fields (51 .%I) and (52 .02)  are computed and the connection 
vector Jk, which corresponds to the hidden unit k (k = 1 or 2) of which the absolute value 
of local field is less than that of the other, is updated with the standard perceptron algorithm. 
(iii) Retums to step (i). This procedure is iterated cyclic ally^ until the student memorizes 
the entire set of examples or the number of iterations reaches a given upper bound. 

Here, we apply the algorithm in an incremental way. Namely, an example is shown, 
the connection J is updated according to the MA, and the example is never again~referred 
to. We assume that the component of every input xk (k = 1,2) is drawn independently 
from a uniform distribution describing the unit sphere SNlz,  and denote the connection after 
m examples are presented as Jm = (.TI"', Jz'"). Hence, the update rule for the (m + 1)th 
example (5, U) can be represented as 

examples (d, ul), (z 2 2  , U ), . . . , (d, u p ) ,  where xw = ( Z I P ,  si:) forms the input vector 

J ~ ~ + ~  = J~~ - @ ( - U .  (A'". O~)(J~". x2)j 
x@(l(Jj" . zj)l - I(Jk'" . z ~ ) l )  . sign(&'" . O X ) .  xk (1) 

where k, j = 1,2 (k # j )  and O(y)  is Heaviside's step function. 
Let us investigate the dynamics of the learning rule (1) in the limit that both the system 

size N and the number of examples m go to infinity, keeping (Y = m / N  finite. We define 
the overlap of the student with the teacher as q k  = (Jk . Jko)/(lJkllJkol) and also define a 
rescaled length of the vector as 1k = I J k l / m  (k = 1,2). For simplicity, let us abbreviate 
the following random variables as 

JX7T(JIO .O)/IJ]Ol = U 
(2) 

~ ( J I  -z)/lJiI~= U 

m ( J 2  . z)/lJzl = s m ( J z o  * ~)/lJzOl = f .  
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As a consequence of the central limit theorem, these pairs of random variables (U, L)) and 
(s, t )  obey two-variable normal distributions 

in the limit N --f CO. We assume that q1 = q2 = 4 and 11 = 12 = 1 from the symmetry of 
the indices k = 1 and 2. Under these assumptions, a set of stochastic difference equations 

lm+12 = Im2 + (2 /N) [E(qm)  - 2F(qm)lm] + 0 (l/N)fluctuation 
(4) 

qm+i = [lmqm - (2/N)G(qm)1/lm+i + O(l/N)fluctuation 
are derived from equations (1) and (3), where E(q)  = {I),, F ( q )  = (sign(u)u), and 
G(q) = (sign(u)u),, where 

(...), =II *.,m44, dududsdtP,(u, u)P,(s,t)( ...). (5) 
l"l4rl 

The first and second of equations (4) are obtained directly by squaring the learning rule 
(1) and by taking its projection along the direction of the teacher J", respectively. The 
effects of random variables x are separated into the expectations E(q),  F ( q )  and G(q), 
and the fluctuation factors. In equation (5), the domain of integration corresponds to the 
condition of modification that an answer is wrong ((U. s ) ( u .  t )  c 0) and the absolute value 
of the local fieId in question is less than that of the other ([ul c Is[). The expectations 
E(q) ,  F ( q )  and G(q) are plotted in figure 2. We find that E ( q )  and F ( q )  are even 
functions, and that G(q) is an odd function with respect to q. The paramagnetic state 
4 = 0 corresponds to the case in which the student gives an answer at random, and 
then the connection is updated with probability l/Z. Since both JI and 52 are updated 
with equal probability, E(0) becomes 1/2 x 1/2 = 1/4. For q sufficiently close to 1, 
namely q = 1 - E ,  the probability of a mistake is proportional to cos-'(q) - 0 (E'/')  and 
such mistakes occur only for U - U - cos-'(q) - 0 (#). We therefore find that these 
expectations converge to zero as E(1-6) - 0 (@), F(1-6) - 0 ( ~ ' 1 ~ )  x o  - 0 ( E )  
and G(l - E) - 0 (E'/') x 0 (E'/') - 0 ( E )  as 6 + 0. In the limit N + CO and m + CO, 

keeping e = m/N finite, the fluctuation terms in equations (4) vanish as O(I/v%), and 
we finally obtain a pair of differential equations: 

dl/da = [ E ( q )  - 2 F ( q ) l ] / I  
(6) I dq/da = - [ E h )  - 2(F(q)  - G(q) /q) l lq / l z .  

We will make a rough sketch of the dynamics of equations (6) before proceeding further. 
First, their solutions have reversal symmetry q U -q because these equations are invariant 
under the reversa1 transformation with respect to q. We therefore can assume q > 0 
without loss of generality. Next, assume that a vector of finite length is chosen as an 
initial state ( I  - 0). We find that the overlap q decreases during the course of learning 
until 1 reaches E(q)/Z(F(q)  - G(q) /q) .  This implies that the generalization ability is now 
lost by learning. This can be explained as follows. Whether q increases or decreases is 
determined by a balance of two factors in the second equation. One is a factor represented 
by E ( q )  - 2F(q)  1. When a vector is modified in some random direction, information of 
a specific direction is lost. These terms represent just such a decrease in the factor q by 
random modification of a vector when 1 is small.  the^ other factor causes Q to grow via 
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Figure 2. Expectations E(q) ,  F(q)  and G(q) and their complements EE(q) ,  FE(q)  and CE(q)  
(see section 3). 

learning, represented by the term -2G(q)/ql .  For simple perceptrons, this factor always 
overcomes the decreasing factor even for small 1 because G(q)  becomes 0 (1) and no 
deterioration of generalization occurs (Baum 1990). On the other hand, the symmetry 
under q ++ -4 reduces G(q) to 0 (4) which is the same order of the decreasing factor in 
the present machines, and the relative size of the two factors reverses when 1 is small. This 
causes a rapid loss of generalization. The paramagnetic state q = 0 becomes unstable as 
the time E reaches E(q) /Z(F(q)  - G(q)/q) .  This growth of q would be suppressed again 
if the condition E(q)/ZF(q) c 1 c E(q) /Z(F(q)  - G(q) /q )  were satisfied. However, this 
inequality never holds because G(q)/q is a non-positive function of q,  and q finally grows 
to 1. If the length 1 is initially set greater than E(q)/(ZF(q)) ,  it continues to decrease until 
the condition 1 < E(q) / (ZF(q))  holds. Once this inequality holds, 1 increases to infinity. 
In this case, q continues to grow for all time. Thus, we find that the perfect generalization 
state q = 1 and I = w is obtained in the limit a! + CO, for any initial condition. 

Let us investigate the details of these dynamics. If a vector of finite length is randomly 
chosen as an initial state, we can assume that I and q are initially placed in the vicinity of 
(1. q )  (0,O). Around q - 0, equations (6) are approximated as 

From the condition dq/da! > 0, we find that the student can start to generalize at the time 
that the rescaled length reaches a critical value 

H3/2 
1, = - 0.696. 

We plot the results of our numerical simulations of the problem, along with the theoretical 
predictions in figure 3. The data are consistent with the theoretical curves. In figure 3(a), 
both the numerical data and the theoretical curve are unremarkable at 1, - 0.696, but at 
IC' = .&?/[4(&- I)] - 1.069, which corresponds to the condition dl/& c 0, a significant 
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Figure 3. Kvolution of the order parameters 1 and q by the lasf action algorithm. Numerical 
experiments are canied out for a system where N = 2000. (a) Markers represent the results 
of the experiments. They are placed for everj  interval Aar = 0.5. Random veculrs with length 
1 = 0.03 and 1.57 are chosen as initial states. Lines are theoretical predictions using equations 
(6) for various initial conditions. (b) The region amund the critical value 1, is enlarged. We 
find that q is switched to increase around 1. - 0.696 for the curve with the initial condition 
(1. q )  = (0.1.0.01). 

change occurs. However, q does indeed begin to increase at Zc, as is plotted in figure 3(b), 
but it is difficult to detect this critical point in a numerical experiment because statistical 
fluctuations of 0 (1/&) for a finitesystem should beadded to equations (6). 

Next, we consider the asymptotic behavior in the limit LY. + 00 in order to investigate 
how fast the student extracts the target rule. For q = 1 - E ,  equations (6) are approximated 
as 

These equations have an asymptotic solution 

E - 0.240a-2’3. (10) 

The prediction error for future examples E is calculated from the overlap q as 

&=2(+) -2d7). cos-’q ’ 
The second term reflects the fact that a correct answer is finally produced if both local fields 
are discrepant with those of the teacher for K = 2 parity machines. From equations (10) 
and ( l l ) ,  we find that the prediction error converges to zero, e.g. 

E - 0.441a-1/3 (12) 

asa+m. 



Loss of generalization in a parig machine 1923 

If the student goes on memorizing the entire set of examples exactly during the course 
of learning, it is known that the prediction error E converges to zero as E - 0 (a-]) (for 
example, see Amari er a1 (1992)). The convergence of equation (12) seems very slow 
compared with this. However, this convergence is remarkably fast in the context of how 
much CPU time is required to obtain the prediction error E .  Hansel et al(1992) also reported 
the result of numerical experiments in their letter. In their experiments, a set of m = N e  
examples is drawn from a uniform distribution and embedded in the present K = 2 machine 
using the original version of LAA. The examples are shown cyclically to a student until 
the entire set is memorized. Although E - 0 ( N / m )  is obtained after memorization, the 
required number~of iterations is not bounded for their strategy. As mentioned below, LAA 
approaches the perceptron algorithm (Rosenblatt 1962) in the limit E -+ 0. The number of 
updates which the perceptron algorithm must make~to memorize a given set of examples is 
0 (l/d2), where d is the minimum distance from an example to the classifying hyperplane 
(see, e.g., Minsky and Papert 1989). This indicates that the required number of iterations 
is bounded for a realization of an example set. However, when examples are chosen from 
a distlibution, the expectation of this number becomes infinite because d can be arbitrarily 
small with a finite probability. This is one reason why computational time of the original 
LAA' is not bounded in our learning paradigm. In addition, the correlation of the position 
of examples sometimes prevents the algorithm from determining a solution in a finite time 
for multilayer networks. In their experiment, Hansel er~aI found that such divergence is 
frequently observed around a - 3. In order to avoid wasting computational resources for 
divergent cases, they stopped the algorithm when the number of iterations reached some 
fixed upper bound, even if the entire set was not yet memorized. This makes it impossible 
to obtain the exact convergence E + 0. On the other hand, the convergence of equation 
(12) states that we can obtain E accuracy after 0 ( N / E ~ )  examples are shown. The required 
time for this calculation is found to scale as 0 ( N 2 / ~ 3 )  in a s&al computer. Solving a 
linear programming problem is another approach to find.the target connection. Karmarkar's 
algorithm is known as a standard method for solving such problems. In order to obtain the 
same accuracy, 'this algorithm requires time of order - 0 (N5.5/&2) in a .serial computer 
(Karmarkar 1984). Compared with these facts, convergence (12) is actually fast for large N .  

A similar result was also obtained by Baum (1990) for simple perceptions. He showed 
that for this machine the prediction error & is obtained in polynomial time by using the 
perceptron algorithm incrementally. The required CPU time for this learning' is 0 ( N 2 / t 3 )  
in a serial computer, which is the same result as ours. The reason for this is as follows. 
For q~ = 1 - e ,  the region of the input space in which the sign of local field is different 
from that of the teacher becomes small as'0 in each receptive field in K = 2 parity 
machines. In this case, a wrong answer is given almost only if one receptive field receives 
an input from such a discrepant region and the other receives an input in region 0 (1) in 
which the sign of local field is consistent with that of the teacher. This ensures that, by 
using LAA, we can modify the connection vector which corresponds to the sign of local field 
that differs from that of the teacher with a probability of almost 1, namely by modifying a 
vector corresponding to the smaller local field. This gives almost the same effect on each 
connection vector as that of perceptron learning. As a result, convergence similar to that of 
Baum's result is achieved asymptotically by our system. 

3. Learning with noise 

In this final section, we investigate the effect of noise on learning. We assume that the 
teacher signal is inverted at a rate A for each example, where the noise is uncorrelated with 
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the position of the input. The problem of finding a decision boundary for an originally 
stochastic binary relation is another example of learning where a student must infer the 
optimal parameters from stochastic teacher signals (Kabashima and Shinomoto 1992, 1993). 
However, this kind of learning is of a rather different nature than that of learning taken 
up here. When a target relation is originally stochastic, the teacher signal s = +I or -1 
is drawn from a conditional probability which is a continuous function of the position of 
the input. In such cases, it would seem to a student that the teacher signals are disrupted 
by noise which is correlated with the position of the input. The level of this noise is 
maximized in the vicinity of the decision boundary, where s = +1 and -1 are equally 
generated. This makes it difficult to infer the decision boundary. A naive strategy to 
find the optimal machine parameters is to minimize the empirical error. Although this 
exhaustive search requires much computation and memory capacity, the mean square error 
of estimation exhibits slow power-law convergence, with exponent 2/3. This convergence 
can be accelerated by elaborate methods of inference. However, it is shown that we cannot 
obtain the fastest convergence with exponent 1 for this type of problem (Kawanabe and 
Amari 1993). although such convergence is achievable by the error minimum strategy if the 
noise is uncorrelated with the position of the input. Thus, the effect of the noise which is 
correlated with the position of the input will require a different approach. 

With noise, a correct answer is regarded as wrong with probability h, and vice versa 
As a result, the connection is updated at a rate h for a ,correct answer and at a rate 1 - h 
for a wrong answer. This replaces the expectations E(q) ,  F ( q )  and G ( q )  in equations (6) 
with 

= (1 - A)&) + hEE(q) 

Fk(4)  = (1 - A ) F ( q )  + hFC(q) 

EA@) = (1 -A)%) fAGE(q) 

(13) 

where Ec(q)  = &', F e @ )  = (sign(u)u),' and GC(q) = (sign(u)u),c, where 

(. . .),C = 1 B.,)(v.Oro. du duds dt P,(u, u)P,(s, t ) ( .  . .). (14) 
I Y l < l l t  

In equation (14), the domain of integration corresponds to the condition of misled 
modification due to noise that an answer is right ((U . s)(u . t) > 0)  and the absolute 
value of the local field in question is less than that of the other (1u1 < [SI). We plot these 
complementary expectations EC(q),  FC(q)  and GC(q) together with E(q) ,  F (q )  and G(q) 
in figure 2. They are not independent of each other because of the complementarity between 
the conditions (U. s ) ( u .  t )  > 0 and (U ' s ) ( u .  t )  < 0. 

We first investigate how the asymptotic behaviour represented by equation (10) is 
modified if an infinitesimal noise rate 1 is introduced. From equations (6) and (13), order 
parameters for 4 = 1 - E  turn out to be subject to the following equations 

where unimportant terms, which are irrelevant to the leading terms with respect to A in the 
solution, are omitted. In the first equation, we find that the effect of noise decreases with 1 
according to -0 (A) 1. This makes I and. E converge to finite values in the limit (Y -+ CO. 

The fixed point of equations (15) can be scaled as 
(Io, €01 - (0 (A-"), 0 (A)). (16) 
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We will calculate the prediction enor by using equation (1 1) assuming that r the prediction 
ability of the student is examined in an environment without noise. Equation (16) indicates 
that 

EO - 0 (h'/Z) (17) 
holds even though 01 

perfectly h ' this case. 
M. In other  words, the student cannot extract the tarzet rule 

h4.2 
- 1  

0.8 

0.6 

0.4 

0.2 

0 

0.8 1 1.2. 1.4 0.8 I 1.2 1.4 0.8 1 . I d  1.4 

Figure 4. Deferioration of learning by noise. Every teacher signal is changed to the opposite 
sign by noise at a rate A during the course of l d g .  Numerical experiments are b e d  out for 
a system where N = 2030 and with noise rates A = 0.0.1 and 0.2 (markers). The abscissa and 
the ordinate represent the rescaled length 1 and the overlap 4. respectively. Markers are placed 
for every interval A@ = 0.5. We find thak a student cannot acquire any generalizaliation ability 
for A = 0.2, which is &nsistent with the theoretical prediction ,& .-. 0.175. Lines represent the 
theoretical curves for A = 0. 

Next we investigate how fast this convergence is attained. We again consider the 
asymptotic behaviour in the limit (Y W. By rescaling the variables I and E as I = h-'lZI 
and E = A?, and linearizing equations (15) around the fixed point, we find that the deviation 
U from the the rescaled fixed point (&, 6)  obeys a linearized equation 

The matrix in equation (18) is found to have two positive eigenvalues BI - 0(h3/') and 
pz - 0 (hl/z), which means the asymptotic form of the solution is 

Equations (17) and (19) state that E - 0 (A1/*) is obtained in 0 ( N / c 3 )  iterations, which 
gives the same order of computation 0 ( N 2 / e 3 )  in a serial computer as that of learning 
without noise. This safely reproduces the scaling relation (12) in the limit A -+ 0. In this 
sense, we can regard this learning strategy as robust for small levels of noise. 

Note that the results obtained above hold only for low noise levels. The results of 
numerical experiments of~learning with finite noise are plotted in figure 4. We find that 
the student does not acquire any generalization ability for h = 0.2, although a fairly large 
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overlap is obtained for A = 0.1. This loss of generalization due to noise is explained as 
follows. Around q - 0, the dynamics of the order parameters for the noise rate h are 
subject to the equations 

This set of equations state that the paramagnetic state q = 0 becomes unstable when 1 
becomes greater than a critical length IC = d2/[8(1 - 2A) l  - 0.696(1 - 2A)-’ which is 
obtained from the condition dq/dA > 0, while I is going to converge to an attracting point 
E,’ = fi/[4(./i - I)] - 1.069, which is determined by the condition dijda < 0. When 1, 
is less than E:, E  is finally attracted into the region I > E ,  for any initial condition. Then, 
q begins to grow. Equations (20) cannot describe the dynamics correctly after q grows to 
a finite value. However, the growth of q shifts the attracting point of E  to a larger value, 
which maintains the condition for the growth of q. and a finite value of q is finally obtained. 
This is the case for a small noise rate. On the other band, for a noise rate beyond 

Ac = [ 1 - (F)n]/2 - 0.175 

which is determined by the condition 1,’ < E, ,  E  converges to 1,’ before q reaches a finite 
value. This makes the paramagnetic state q = 0 a stable fixed point. As a result, the student 
cannot acquire any generalization ability even in the limit a -+ CQ. 

For a noise rate just below Ac. the reversal symmetry q t, -q causes the overlap 
obtained in the limit a + 03 to scale as q - 0 This is similar to what happens 
in second-order phase transitions in ferromagnetic spin systems. While this analogy is not 
exact, it is useful to compare these systems in the following way. In the previous section, we 
showed that the leaning rule (1) reduces the prediction error E to its minimum value (zero) 
as a + 03 unless the teacher signal is changed by noise. On the other hand, when the sign 
of each teacher signal is reversed, the student adapts himself to the completely opposite 
rule which has the maximum prediction error, E = 1. This means that the inversion of 
the teacher signal causes the prediction error E to increase. By introducing a noise rate A, 
the learning rule (1) accepts those updates that increase the ‘energy’ E with a probability 
which is proportional to A. This kind of dynamics is analogous to what happens in physical 
systems with a finite temperature, where the acceptance rate for an increase in the energy is 
the ‘temperature’ of the system. At a high temperature, the system is free to go anywhere 
in the phase space because energy barriers are easily surmounted. As a result, the thermal 
average of the overlap goes to zero. On the other hand, at a low temperature below the 
critical value, the system cannot move from one state to a state which has an overlap of 
the opposite sign because it takes an infinitely long time to climb over the energy barrier 
between them, which yields non-zero overlap. This is an expIanation of phase aansition in 
physical systems. Such an interpretation, however, also holds in our system by regarding 
the noise rate A as a temperature. In this sense, the loss of generalization due to noise at 
A, is identical to a ferro-paramagnetic phase transition in spin systems. 
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